
10.3 | Kirchhoff's Rules

Learning Objectives

By the end of the section, you will be able to:

• State Kirchhoff’s junction rule

• State Kirchhoff’s loop rule

• Analyze complex circuits using Kirchhoff’s rules

We have just seen that some circuits may be analyzed by reducing a circuit to a single voltage source and an equivalent
resistance. Many complex circuits cannot be analyzed with the series-parallel techniques developed in the preceding
sections. In this section, we elaborate on the use of Kirchhoff’s rules to analyze more complex circuits. For example, the
circuit in Figure 10.19 is known as a multi-loop circuit, which consists of junctions. A junction, also known as a node, is
a connection of three or more wires. In this circuit, the previous methods cannot be used, because not all the resistors are in
clear series or parallel configurations that can be reduced. Give it a try. The resistors R1 and R2 are in series and can be

reduced to an equivalent resistance. The same is true of resistors R4 and R5 . But what do you do then?

Even though this circuit cannot be analyzed using the methods already learned, two circuit analysis rules can be used to
analyze any circuit, simple or complex. The rules are known as Kirchhoff’s rules, after their inventor Gustav Kirchhoff
(1824–1887).

Figure 10.19 This circuit cannot be reduced to a combination
of series and parallel connections. However, we can use
Kirchhoff’s rules to analyze it.

Kirchhoff’s Rules

• Kirchhoff’s first rule—the junction rule. The sum of all currents entering a junction must equal the sum of all
currents leaving the junction:

(10.4)∑ Iin = ∑ Iout.

• Kirchhoff’s second rule—the loop rule. The algebraic sum of changes in potential around any closed circuit
path (loop) must be zero:

(10.5)∑ V = 0.

We now provide explanations of these two rules, followed by problem-solving hints for applying them and a worked
example that uses them.

Kirchhoff’s First Rule
Kirchhoff’s first rule (the junction rule) applies to the charge entering and leaving a junction (Figure 10.20). As stated
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earlier, a junction, or node, is a connection of three or more wires. Current is the flow of charge, and charge is conserved;
thus, whatever charge flows into the junction must flow out.

Figure 10.20 Charge must be conserved, so the sum of
currents into a junction must be equal to the sum of currents out
of the junction.

Although it is an over-simplification, an analogy can be made with water pipes connected in a plumbing junction. If the
wires in Figure 10.20 were replaced by water pipes, and the water was assumed to be incompressible, the volume of water
flowing into the junction must equal the volume of water flowing out of the junction.

Kirchhoff’s Second Rule
Kirchhoff’s second rule (the loop rule) applies to potential differences. The loop rule is stated in terms of potential V
rather than potential energy, but the two are related since U = qV . In a closed loop, whatever energy is supplied by a

voltage source, the energy must be transferred into other forms by the devices in the loop, since there are no other ways in
which energy can be transferred into or out of the circuit. Kirchhoff’s loop rule states that the algebraic sum of potential
differences, including voltage supplied by the voltage sources and resistive elements, in any loop must be equal to zero. For
example, consider a simple loop with no junctions, as in Figure 10.21.

Figure 10.21 A simple loop with no junctions. Kirchhoff’s
loop rule states that the algebraic sum of the voltage differences
is equal to zero.

The circuit consists of a voltage source and three external load resistors. The labels a, b, c, and d serve as references, and
have no other significance. The usefulness of these labels will become apparent soon. The loop is designated as Loop abcda,
and the labels help keep track of the voltage differences as we travel around the circuit. Start at point a and travel to point
b. The voltage of the voltage source is added to the equation and the potential drop of the resistor R1 is subtracted. From

point b to c, the potential drop across R2 is subtracted. From c to d, the potential drop across R3 is subtracted. From points

d to a, nothing is done because there are no components.

Figure 10.22 shows a graph of the voltage as we travel around the loop. Voltage increases as we cross the battery, whereas
voltage decreases as we travel across a resistor. The potential drop, or change in the electric potential, is equal to the current
through the resistor times the resistance of the resistor. Since the wires have negligible resistance, the voltage remains
constant as we cross the wires connecting the components.
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Figure 10.22 A voltage graph as we travel around the circuit. The voltage
increases as we cross the battery and decreases as we cross each resistor. Since
the resistance of the wire is quite small, we assume that the voltage remains
constant as we cross the wires connecting the components.

Then Kirchhoff’s loop rule states

V − IR1 − IR2 − IR3 = 0.

The loop equation can be used to find the current through the loop:

I = V
R1 + R2 + R2

= 12.00 V
1.00 Ω + 2.00 Ω + 3.00 Ω = 2.00 A.

This loop could have been analyzed using the previous methods, but we will demonstrate the power of Kirchhoff’s method
in the next section.

Applying Kirchhoff’s Rules
By applying Kirchhoff’s rules, we generate a set of linear equations that allow us to find the unknown values in circuits.
These may be currents, voltages, or resistances. Each time a rule is applied, it produces an equation. If there are as many
independent equations as unknowns, then the problem can be solved.

Using Kirchhoff’s method of analysis requires several steps, as listed in the following procedure.

Problem-Solving Strategy: Kirchhoff’s Rules

1. Label points in the circuit diagram using lowercase letters a, b, c, …. These labels simply help with orientation.

2. Locate the junctions in the circuit. The junctions are points where three or more wires connect. Label each
junction with the currents and directions into and out of it. Make sure at least one current points into the
junction and at least one current points out of the junction.

3. Choose the loops in the circuit. Every component must be contained in at least one loop, but a component may
be contained in more than one loop.

4. Apply the junction rule. Again, some junctions should not be included in the analysis. You need only use
enough nodes to include every current.

5. Apply the loop rule. Use the map in Figure 10.23.
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Figure 10.23 Each of these resistors and voltage sources is
traversed from a to b. (a) When moving across a resistor in the same
direction as the current flow, subtract the potential drop. (b) When
moving across a resistor in the opposite direction as the current flow,
add the potential drop. (c) When moving across a voltage source
from the negative terminal to the positive terminal, add the potential
drop. (d) When moving across a voltage source from the positive
terminal to the negative terminal, subtract the potential drop.

Let’s examine some steps in this procedure more closely. When locating the junctions in the circuit, do not be concerned
about the direction of the currents. If the direction of current flow is not obvious, choosing any direction is sufficient as
long as at least one current points into the junction and at least one current points out of the junction. If the arrow is in the
opposite direction of the conventional current flow, the result for the current in question will be negative but the answer will
still be correct.

The number of nodes depends on the circuit. Each current should be included in a node and thus included in at least one
junction equation. Do not include nodes that are not linearly independent, meaning nodes that contain the same information.

Consider Figure 10.24. There are two junctions in this circuit: Junction b and Junction e. Points a, c, d, and f are not
junctions, because a junction must have three or more connections. The equation for Junction b is I1 = I2 + I3 , and the

equation for Junction e is I2 + I3 = I1 . These are equivalent equations, so it is necessary to keep only one of them.

Figure 10.24 At first glance, this circuit contains two
junctions, Junction b and Junction e, but only one should be
considered because their junction equations are equivalent.
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When choosing the loops in the circuit, you need enough loops so that each component is covered once, without repeating
loops. Figure 10.25 shows four choices for loops to solve a sample circuit; choices (a), (b), and (c) have a sufficient
amount of loops to solve the circuit completely. Option (d) reflects more loops than necessary to solve the circuit.

Figure 10.25 Panels (a)–(c) are sufficient for the analysis of the circuit. In each case, the two loops shown contain all
the circuit elements necessary to solve the circuit completely. Panel (d) shows three loops used, which is more than
necessary. Any two loops in the system will contain all information needed to solve the circuit. Adding the third loop
provides redundant information.

Consider the circuit in Figure 10.26(a). Let us analyze this circuit to find the current through each resistor. First, label the
circuit as shown in part (b).

Figure 10.26 (a) A multi-loop circuit. (b) Label the circuit to help with orientation.

Next, determine the junctions. In this circuit, points b and e each have three wires connected, making them junctions. Start

to apply Kirchhoff’s junction rule ⎛
⎝∑ Iin = ∑ Iout

⎞
⎠ by drawing arrows representing the currents and labeling each arrow,

as shown in Figure 10.27(b). Junction b shows that I1 = I2 + I3 and Junction e shows that I2 + I3 = I1 . Since Junction
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e gives the same information of Junction b, it can be disregarded. This circuit has three unknowns, so we need three linearly
independent equations to analyze it.

Figure 10.27 (a) This circuit has two junctions, labeled b and
e, but only node b is used in the analysis. (b) Labeled arrows
represent the currents into and out of the junctions.

Next we need to choose the loops. In Figure 10.28, Loop abefa includes the voltage source V1 and resistors R1 and R2

. The loop starts at point a, then travels through points b, e, and f, and then back to point a. The second loop, Loop ebcde,
starts at point e and includes resistors R2 and R3 , and the voltage source V2 .

Figure 10.28 Choose the loops in the circuit.

Now we can apply Kirchhoff’s loop rule, using the map in Figure 10.23. Starting at point a and moving to point b, the
resistor R1 is crossed in the same direction as the current flow I1 , so the potential drop I1 R1 is subtracted. Moving from

point b to point e, the resistor R2 is crossed in the same direction as the current flow I2 so the potential drop I2 R2 is

subtracted. Moving from point e to point f, the voltage source V1 is crossed from the negative terminal to the positive

terminal, so V1 is added. There are no components between points f and a. The sum of the voltage differences must equal

zero:

Loop abe f a : − I1 R1 − I2 R2 + V1 = 0 or V1 = I1 R1 + I2 R2.

Finally, we check loop ebcde. We start at point e and move to point b, crossing R2 in the opposite direction as the current

flow I2 . The potential drop I2 R2 is added. Next, we cross R3 and R4 in the same direction as the current flow I3 and

subtract the potential drops I3 R3 and I3 R4. Note that the current is the same through resistors R3 and R4 , because they

are connected in series. Finally, the voltage source is crossed from the positive terminal to the negative terminal, and the
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voltage source V2 is subtracted. The sum of these voltage differences equals zero and yields the loop equation

Loop ebcde : I2 R2 − I3
⎛
⎝R3 + R4

⎞
⎠ − V2 = 0.

We now have three equations, which we can solve for the three unknowns.

(1) Junction b : I1 − I2 − I3 = 0.
(2) Loop abe f a : I1 R1 + I2 R2 = V1.
(3) Loop ebcde : I2 R2 − I3

⎛
⎝R3 + R4

⎞
⎠ = V2.

To solve the three equations for the three unknown currents, start by eliminating current I2 . First add Eq. (1) times R2 to

Eq. (2). The result is labeled as Eq. (4):

⎛
⎝R1 + R2

⎞
⎠I1 − R2 I3 = V1.

(4) 6 ΩI1 − 3 ΩI3 = 24 V.

Next, subtract Eq. (3) from Eq. (2). The result is labeled as Eq. (5):

I1 R1 + I3
⎛
⎝R3 + R4

⎞
⎠ = V1 − V2.

(5) 3 ΩI1 + 7 ΩI3 = −5 V.

We can solve Eqs. (4) and (5) for current I1 . Adding seven times Eq. (4) and three times Eq. (5) results in

51 ΩI1 = 153 V, or I1 = 3.00 A. Using Eq. (4) results in I3 = −2.00 A. Finally, Eq. (1) yields

I2 = I1 − I3 = 5.00 A. One way to check that the solutions are consistent is to check the power supplied by the voltage

sources and the power dissipated by the resistors:

Pin = I1 V1 + I3 V2 = 130 W,
Pout = I1

2 R1 + I2
2 R2 + I3

2 R3 + I3
2 R4 = 130 W.

Note that the solution for the current I3 is negative. This is the correct answer, but suggests that the arrow originally drawn

in the junction analysis is the direction opposite of conventional current flow. The power supplied by the second voltage
source is 58 W and not −58 W.

Example 10.6

Calculating Current by Using Kirchhoff’s Rules

Find the currents flowing in the circuit in Figure 10.29.
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Figure 10.29 This circuit is combination of series and parallel
configurations of resistors and voltage sources. This circuit cannot
be analyzed using the techniques discussed in Electromotive
Force but can be analyzed using Kirchhoff’s rules.

Strategy

This circuit is sufficiently complex that the currents cannot be found using Ohm’s law and the series-parallel
techniques—it is necessary to use Kirchhoff’s rules. Currents have been labeled I1, I2, and I3 in the figure,

and assumptions have been made about their directions. Locations on the diagram have been labeled with letters
a through h. In the solution, we apply the junction and loop rules, seeking three independent equations to allow
us to solve for the three unknown currents.

Solution

Applying the junction and loop rules yields the following three equations. We have three unknowns, so three
equations are required.

Junction c : I1 + I2 = I3.
Loop abcde f a : I1

⎛
⎝R1 + R4

⎞
⎠ − I2

⎛
⎝R2 + R5 + R6

⎞
⎠ = V1 − V3.

Loop cde f c : I2
⎛
⎝R2 + R5 + R6

⎞
⎠ + I3 R3 = V2 + V3.

Simplify the equations by placing the unknowns on one side of the equations.

Junction c : I1 + I2 − I3 = 0.
Loop abcde f a : I1 (3 Ω) − I2 (8 Ω) = 0.5 V − 2.30 V.
Loop cde f c : I2 (8 Ω) + I3 (1 Ω) = 0.6 V + 2.30 V.

Simplify the equations. The first loop equation can be simplified by dividing both sides by 3.00. The second loop
equation can be simplified by dividing both sides by 6.00.

Junction c : I1 + I2 − I3 = 0.
Loop abcde f a : I1 (3 Ω) − I2 (8 Ω) = −1.8 V.
Loop cde f c : I2 (8 Ω) + I3 (1 Ω) = 2.9 V.

The results are

I1 = 0.20 A, I2 = 0.30 A, I3 = 0.50 A.
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10.6

Significance

A method to check the calculations is to compute the power dissipated by the resistors and the power supplied by
the voltage sources:

PR1
= I1

2 R1 = 0.04 W.

PR2
= I2

2 R2 = 0.45 W.

PR3
= I3

2 R3 = 0.25 W.

PR4
= I1

2 R4 = 0.08 W.

PR5
= I2

2 R5 = 0.09 W.

PR6
= I2

2 R6 = 0.18 W.

Pdissipated = 1.09 W.
Psource = I1 V1 + I2 V3 + I3 V2 = 0.10 W + 0.69 W + 0.30 W = 1.09 W.

The power supplied equals the power dissipated by the resistors.

Check Your Understanding In considering the following schematic and the power supplied and
consumed by a circuit, will a voltage source always provide power to the circuit, or can a voltage source
consume power?

Example 10.7

Calculating Current by Using Kirchhoff’s Rules

Find the current flowing in the circuit in Figure 10.30.
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Figure 10.30 This circuit consists of three resistors and two
batteries connected in series. Note that the batteries are
connected with opposite polarities.

Strategy

This circuit can be analyzed using Kirchhoff’s rules. There is only one loop and no nodes. Choose the direction
of current flow. For this example, we will use the clockwise direction from point a to point b. Consider Loop
abcda and use Figure 10.23 to write the loop equation. Note that according to Figure 10.23, battery V1 will

be added and battery V2 will be subtracted.

Solution

Applying the junction rule yields the following three equations. We have one unknown, so one equation is
required:

Loop abcda : − IR1 − V1 − IR2 + V2 − IR3 = 0.

Simplify the equations by placing the unknowns on one side of the equations. Use the values given in the figure.

I⎛
⎝R1 + R2 + R3

⎞
⎠ = V2 − V1.

I = V2 − V1
R1 + R2 + R3

= 24 V − 12 V
10.0 Ω + 30.0 Ω + 10.0 Ω = 0.20 A.

Significance

The power dissipated or consumed by the circuit equals the power supplied to the circuit, but notice that the
current in the battery V1 is flowing through the battery from the positive terminal to the negative terminal and

consumes power.

PR1
= I 2 R1 = 0.40 W

PR2
= I 2 R2 = 1.20 W

PR3
= I 2 R3 = 0.80 W

PV1
= IV1 = 2.40 W

Pdissipated = 4.80 W
Psource = IV2 = 4.80 W

The power supplied equals the power dissipated by the resistors and consumed by the battery V1.
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10.7 Check Your Understanding When using Kirchhoff’s laws, you need to decide which loops to use and
the direction of current flow through each loop. In analyzing the circuit in Example 10.7, the direction of
current flow was chosen to be clockwise, from point a to point b. How would the results change if the direction
of the current was chosen to be counterclockwise, from point b to point a?

Multiple Voltage Sources
Many devices require more than one battery. Multiple voltage sources, such as batteries, can be connected in series
configurations, parallel configurations, or a combination of the two.

In series, the positive terminal of one battery is connected to the negative terminal of another battery. Any number of voltage
sources, including batteries, can be connected in series. Two batteries connected in series are shown in Figure 10.31. Using
Kirchhoff’s loop rule for the circuit in part (b) gives the result

ε1 − Ir1 + ε2 − Ir2 − IR = 0,
⎡
⎣(ε1 + ε2) − I(r1 + r2)⎤

⎦ − IR = 0.

Figure 10.31 (a) Two batteries connected in series with a load
resistor. (b) The circuit diagram of the two batteries and the load
resistor, with each battery modeled as an idealized emf source
and an internal resistance.

When voltage sources are in series, their internal resistances can be added together and their emfs can be added together
to get the total values. Series connections of voltage sources are common—for example, in flashlights, toys, and other
appliances. Usually, the cells are in series in order to produce a larger total emf. In Figure 10.31, the terminal voltage is

Vterminal = ⎛
⎝ε1 − Ir1

⎞
⎠ + ⎛

⎝ε2 − Ir2
⎞
⎠ = ⎡

⎣(ε1 + ε2) − I(r1 + r2)⎤
⎦ = (ε1 + ε2) + Ireq.

Note that the same current I is found in each battery because they are connected in series. The disadvantage of series
connections of cells is that their internal resistances are additive.

Batteries are connected in series to increase the voltage supplied to the circuit. For instance, an LED flashlight may have
two AAA cell batteries, each with a terminal voltage of 1.5 V, to provide 3.0 V to the flashlight.

Any number of batteries can be connected in series. For N batteries in series, the terminal voltage is equal to

(10.6)
Vterminal = (ε1 + ε2 + ⋯ + εN − 1 + εN) − I(r1 + r2 + ⋯ + rN − 1 + rN) = ∑

i = 1

N
εi − Ireq
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where the equivalent resistance is req = ∑
i = 1

N
ri .

When a load is placed across voltage sources in series, as in Figure 10.32, we can find the current:
⎛
⎝ε1 − Ir1

⎞
⎠ + ⎛

⎝ε2 − Ir2
⎞
⎠ = IR,

Ir1 + Ir2 + IR = ε1 + ε2,
I = ε1 + ε2

r1 + r2 + R.

As expected, the internal resistances increase the equivalent resistance.

Figure 10.32 Two batteries connect in series to an LED bulb,
as found in a flashlight.

Voltage sources, such as batteries, can also be connected in parallel. Figure 10.33 shows two batteries with identical emfs
in parallel and connected to a load resistance. When the batteries are connect in parallel, the positive terminals are connected
together and the negative terminals are connected together, and the load resistance is connected to the positive and negative
terminals. Normally, voltage sources in parallel have identical emfs. In this simple case, since the voltage sources are in
parallel, the total emf is the same as the individual emfs of each battery.

Figure 10.33 (a) Two batteries connect in parallel to a load resistor. (b)
The circuit diagram shows the shows battery as an emf source and an
internal resistor. The two emf sources have identical emfs (each labeled
by ε ) connected in parallel that produce the same emf.

Consider the Kirchhoff analysis of the circuit in Figure 10.33(b). There are two loops and a node at point b and
ε = ε1 = ε2 .
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Node b: I1 + I2 − I = 0 .

Loop abcfa:
ε − I1 r1 + I2 r2 − ε = 0,

I1 r1 = I2 r2.

Loop fcdef:
ε2 − I2 r2 − IR = 0,

ε − I2 r2 − IR = 0.

Solving for the current through the load resistor results in I = ε
req + R , where req = ⎛

⎝
1
r1

+ 1
r2

⎞
⎠

−1
. The terminal voltage is

equal to the potential drop across the load resistor IR = ⎛
⎝

ε
req + R

⎞
⎠ . The parallel connection reduces the internal resistance

and thus can produce a larger current.

Any number of batteries can be connected in parallel. For N batteries in parallel, the terminal voltage is equal to

(10.7)
Vterminal = ε − I⎛

⎝
1
r1

+ 1
r2

+ ⋯ + 1
rN − 1

+ 1
rN

⎞
⎠

−1
= ε − Ireq

where the equivalent resistance is req =
⎛

⎝
⎜∑
i = 1

N
1
ri

⎞

⎠
⎟

−1

.

As an example, some diesel trucks use two 12-V batteries in parallel; they produce a total emf of 12 V but can deliver the
larger current needed to start a diesel engine.

In summary, the terminal voltage of batteries in series is equal to the sum of the individual emfs minus the sum of the
internal resistances times the current. When batteries are connected in parallel, they usually have equal emfs and the
terminal voltage is equal to the emf minus the equivalent internal resistance times the current, where the equivalent internal
resistance is smaller than the individual internal resistances. Batteries are connected in series to increase the terminal voltage
to the load. Batteries are connected in parallel to increase the current to the load.

Solar Cell Arrays
Another example dealing with multiple voltage sources is that of combinations of solar cells—wired in both series and
parallel combinations to yield a desired voltage and current. Photovoltaic generation, which is the conversion of sunlight
directly into electricity, is based upon the photoelectric effect. The photoelectric effect is beyond the scope of this chapter
and is covered in Photons and Matter Waves (http://cnx.org/content/m58757/latest/) , but in general, photons
hitting the surface of a solar cell create an electric current in the cell.

Most solar cells are made from pure silicon. Most single cells have a voltage output of about 0.5 V, while the current output
is a function of the amount of sunlight falling on the cell (the incident solar radiation known as the insolation). Under bright

noon sunlight, a current per unit area of about 100 mA/cm2 of cell surface area is produced by typical single-crystal cells.

Individual solar cells are connected electrically in modules to meet electrical energy needs. They can be wired together in
series or in parallel—connected like the batteries discussed earlier. A solar-cell array or module usually consists of between
36 and 72 cells, with a power output of 50 W to 140 W.

Solar cells, like batteries, provide a direct current (dc) voltage. Current from a dc voltage source is unidirectional. Most
household appliances need an alternating current (ac) voltage.
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